pint.derived_quantities.sini

pint.derived_quantities.sini(mp: Quantity, mc: Quantity, pb: Quantity, x: Quantity)[source]

Post-Keplerian sine of inclination, assuming general relativity.

Can handle scalar or array inputs.

Parameters:
Returns:

sini

Return type:

astropy.units.Quantity

Raises:

Notes

Calculates

\[s = T_{\odot}^{-1/3} \left(\frac{P_b}{2\pi}\right)^{-2/3} \frac{(m_p+m_c)^{2/3}}{m_c}\]

with \(T_\odot = GM_\odot c^{-3}\).

More details in Timing Models. Also see [11].